String graphs. II. recognizing string graphs is NP-hard

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing tough graphs is NP-hard

We consider only undirected graphs without loops or multiple edges. Our terminology and notation will be standard except as indicated; a good reference for any undefined terms is [2]. We will use c(G) to denote the number of components of a graph G. Chvtital introduced the notion of tough graphs in [3]. Let t be any positive real number. A graph G is said to be t-tough if tc(G-X)5 JXJ for all X...

متن کامل

Multivariate Algorithmics for NP-Hard String Problems

String problems arise in various applications ranging from text mining to biological sequence analysis. Many string problems are NP-hard. This motivates the search for (fixed-parameter) tractable special cases of these problems. We survey parameterized and multivariate algorithmics results for NP-hard string problems and identify challenges for future research.

متن کامل

String graphs and separators

String graphs, that is, intersection graphs of curves in the plane, have been studied since the 1960s. We provide an expository presentation of several results, including very recent ones: some string graphs require an exponential number of crossings in every string representation; exponential number is always sufficient; string graphs have small separators; and the current best bound on the cr...

متن کامل

String shuffle: Circuits and graphs

We show that shuffle, the problem of determining whether a string w can be composed from an order preserving shuffle of strings x and y, is not in AC, but it is in AC. The fact that shuffle is not in AC is shown by a reduction of parity to shuffle and invoking the seminal result of Furst et al., while the fact that it is in AC is implicit in the results of Mansfield. Together, the two results p...

متن کامل

Intersection Graphs for String Links

We extend the notion of intersection graphs for knots in the theory of finite type invariants to string links. We use our definition to develop weight systems for string links via the adjacency matrix of the intersection graphs, and show that these weight systems are related to the weight systems induced by the Conway and Homfly polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1991

ISSN: 0095-8956

DOI: 10.1016/0095-8956(91)90091-w